In which metric spaces are parallel bodies of closed sets closed?

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Closed Sets in Čech Closed Spaces

The purpose of the present paper is to introduce the concept of generalized closed sets in Čech closure spaces and investigate some of their characterizations. 2000 Mathematics Subject Classification: 54A05.

متن کامل

Some new properties of fuzzy strongly ${{g}^{*}}$-closed sets and $delta {{g}^{*}}$-closed sets in fuzzy topological spaces

‎In this paper, a new class of fuzzy sets called fuzzy strongly ${{g}^{*}}$-closed sets is introduced and its properties are investigated. Moreover, we study some more properties of this type of closed spaces.

متن کامل

On Regular Generalized $delta$-closed Sets in Topological Spaces

In this paper a new class of sets called  regular generalized  $delta$-closed set (briefly rg$delta$-closed set)is introduced and its properties are studied. Several examples are provided to illustrate the behaviour of these new class of sets.

متن کامل

Soft regular generalized b-closed sets in soft topological spaces

The main purpose of this paper is to introduce and study new classes of soft closed sets like soft regular generalized b-closed sets in soft topological spaces (briefly soft rgb-closed set) Moreover, soft rg-closed, soft gpr-closed, soft gb-closed, soft gsp-closed, soft g$alpha$-closed, soft g$alpha$b-closed, and soft sgb-closed sets in soft topological spaces are introduced in this paper and w...

متن کامل

More On λκ−closed sets in generalized topological spaces

In this paper, we introduce λκ−closed sets and study its properties in generalized topological spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1983

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500016977